Equivariant Nielsen fixed point theory for n-valued maps

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NIELSEN COINCIDENCE, FIXED POINT AND ROOT THEORIES OF n-VALUED MAPS

Let (φ, ψ) be an (m,n)-valued pair of maps φ, ψ : X ( Y , where φ is an m-valued map and ψ is n-valued, on connected finite polyhedra. A point x ∈ X is a coincidence point of φ and ψ if φ(x) ∩ ψ(x) 6= ∅. We define a Nielsen coincidence number N(φ : ψ) which is a lower bound for the number of coincidence points of all (m,n)-valued pairs of maps homotopic to (φ, ψ). We calculate N(φ : ψ) for all ...

متن کامل

STABILIZERS OF FIXED POINT CLASSES AND NIELSEN NUMBERS OF n-VALUED MAPS

The stabilizer of a fixed point class of a map is the fixed subgroup of the induced fundamental group homomorphism based at a point in the class. A theorem of Jiang, Wang and Zhang is used to prove that if a map of a graph satisfies a strong remnant condition, then the stabilizers of all its fixed point classes are trivial. Consequently, if φp,f is the nvalued lift to a covering space p of a ma...

متن کامل

Epsilon Nielsen Fixed Point Theory

Let f : X → X be a map of a compact, connected Riemannian manifold, with or without boundary. For > 0 sufficiently small, we introduce an -Nielsen number N ( f ) that is a lower bound for the number of fixed points of all self-maps of X that are -homotopic to f . We prove that there is always a map g : X → X that is -homotopic to f such that g has exactlyN ( f ) fixed points. We describe proced...

متن کامل

Structure of the Fixed Point of Condensing Set-Valued Maps

In this paper, we present structure of the fixed point set results for condensing set-valued map. Also, we prove a generalization of the Krasnosel'skii-Perov connectedness principle to the case of condensing set-valued maps.

متن کامل

Fixed Point Free Involutions and Equivariant Maps

1. Preliminaries. We are concerned with involutions without fixed points, together with equivariant maps connecting such involutions. An involution T is a homeomorphism of period 2 of a Hausdorff space X onto itself; that is, T(x) = x for all x £ X . There is associated with an involution T on X the orbit space X/T, obtained by identifying x with T(x) for all x G Z . Denote by v\ X—+X/T the dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2010

ISSN: 0166-8641

DOI: 10.1016/j.topol.2010.02.023